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We use direct numerical simulation to study the mixing behaviour of pulsed jets in
crossflow. The pulse is a square wave and the simulations consider several jet velocity
ratios and pulse conditions. Our objective is to study the effects of pulsing and to
explain the wide range of optimal pulsing conditions found in experimental studies
of the problem. The central theme is that pulsing generates vortex rings; the effect
of pulsing on transverse jets can therefore be explained by the behaviour of vortex
rings in crossflow. Sau & Mahesh (J. Fluid Mech., vol. 604, 2008, pp. 389-409) show
that vortex rings in crossflow exhibit three distinct flow regimes depending on stroke
and ring velocity ratios. The simulations of pulsed transverse jets in this paper show
that at high velocity ratios, optimal pulse conditions correspond to the transition of
the vortex rings produced by pulsing between the different regimes. At low velocity
ratios, optimal pulsing conditions are related to the natural time scale on which
hairpin vortices form. An optimal curve in the space of stroke and velocity ratios is
presented. Data from various experiments are interpreted in terms of the properties of
the equivalent vortex rings and shown to collapse on the optimal curve. The proposed
regime map allows the effects of experimental parameters such as pulse frequency,
duty cycle, modulation and pulse energy all to be predicted by determining their effect
on the equivalent stroke and velocity ratios.

1. Introduction

Jets in crossflow are central to applications such as dilution holes in combustors,
fuel injectors, pollutant dispersion from smoke stacks, thrust vectoring of turbojets
and V/STOL aircraft. A large body of work therefore exists (see e.g. the review by
Margason 1993). There have been some attempts to develop control strategies for
this flow. Recent experiments (e.g. Wu, Vakili & Yu 1988; Chang & Vakili 1995;
Hermanson, Wahba & Johari 1998; Johari, Pacheco-Tougas & Hermanson 1999;
Blossey et al. 2001; Eroglu & Breidenthal 2001; M’Closkey et al. 2002; Karagozian,
Cortelezi & Soldati 2003; Shapiro et al. 2006) have considered periodic pulsed
excitation of the jet as a means of control and shown that jet penetration and spread
can be maximized under specific pulsing conditions. The pulsing mechanism has
involved solenoidal valves (Eroglu & Briedenthal 2001), spinning mechanical valves
(Narayanan, Barooah & Cohen 2003) and acoustic forcing (Vermuelen, Rainville &
Ramesh 1992; M’Closkey et al. 2002; Shapiro et al. 2003). The effects of forcing
amplitude, duty cycle (defined as the fraction of time during a period that the pulsing
is ‘on’) and shape of forcing waveform have been considered.
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The following observations have been made. Square wave excitation is more effective
than sinusoidal forcing (M’Closkey et al. 2002). We therefore consider square wave
excitation in this paper. Forcing at frequencies that are dominant near the jet exit
does not cause appreciable change in jet penetration. Also, while mixing might be
enhanced locally, peak scalar levels in the far field remain high (Narayanan et al.
2003). Low frequency forcing yields significant increase in jet penetration depth (Wu
et al. 1988; Johari et al. 1999; Eroglu & Briedenthal 2001; M’Closkey et al. 2002;
Narayanan et al. 2003). Optimal forcing conditions are configuration- and apparatus-
dependent (Shapiro et al. 2003). Also, the optimal frequencies vary over a wide range
(Narayanan et al. 2003). In general, as long as the forcing frequency is low enough,
an optimal duty cycle is found to exist (Shapiro et al. 2003). Pulsing might have a
greater effect on mixing at low velocity ratios and lower Reynolds numbers (Eroglu &
Briedenthal 2001). Long injection times yield moderate enhancement for fully pulsed
jets, while short injection times and smaller duty cycle yield significant enhancement
over the steady jet (Johari et al. 1999).

The physical mechanisms that maximize jet penetration are not well understood;
also, scaling laws that allow optimal conditions to be predicted /scaled are not known.
The optimal conditions are typically presented in terms of a Strouhal number, St.
However, the optimal St can vary from 0.004 to 0.5 between experiments (Narayanan
et al. 2003). Some researchers (e.g. M’Closkey et al. 2002; Shapiro et al. 2003; Johari
2006) relate optimal pulse condition for maximum penetration to the ‘formation
number’ proposed by Gharib, Rambod & Shariff (1998) for vortex ring formation in
a quiescent medium. Formation number which is a universal time scale, denotes the
transition between two distinct states of vortex rings in stationary fluid — single vortex
ring and vortex ring with trailing column. Johari (2006) proposes ‘stroke ratio’ and
‘duty cycle’ as the only parameters describing pulsed jets in crossflow. A classification
scheme is proposed which is based on the ‘formation number’. He suggests that
discrete vortex rings are created for L/D <4 and rings with trailing column are
produced for L/D > 4. However, Sau & Mahesh (2008) show that this is only valid
in a quiescent medium; crossflow significantly changes the vortex ring dynamics and
mixing properties. Three regimes for vortex rings are found and transition between
these regimes strongly depends on the crossflow velocity ratio. The scaling used by
Johari (2006) is only based on vortex ring properties in stationary fluid. The effect of
crossflow, i.e. jet to crossflow velocity ratio, on the vortex rings is ignored. Furthermore,
the critical stroke ratio for deeply penetrating vortical structures and optimal jet
penetration is approximately one-half of the ‘formation number’ (M’Closkey et al.
2002; Shapiro et al. 2003). There have been attempts to relate the pulsing to shear-
layer instabilities in the jet. Megerian et al. (2007) studied the effect of jet velocity
ratio R on shear-layer instabilities in transverse jets. The nature and strength of the
instability modes were found to be significantly different for R > 3.5 and R <3.5.
They suggest that low-level jet forcing does not appreciably influence the shear-layer
response when strong modes are present; low-level forcing has significant influence
when strong modes are absent.

It is readily seen from experimental flow visualization that square wave pulsing
of the jet produces discrete vortex rings. This behaviour may be anticipated, since
pulsing would produce starting vortices. The main idea proposed in this paper is
that the effect of pulsing on jets in crossflow can be explained by considering the
behaviour of vortex rings in crossflow. We build on past work by Sau & Mahesh
who considered vortex rings in quiescent flow (2007) and a uniform crossflow (2008),
respectively. Sau & Mahesh (2007) use direct numerical simulation (DNS) to study
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FiGURE 1. (Colour online) Regime map showing three different flow structures of vortex
rings in crossflow (Sau & Mahesh 2008).

optimal mixing by a single vortex ring in stationary fluid. They consider two Schmidt
numbers and a range of stroke ratios. The formation number is found to yield
the maximum entrainment for both Schmidt numbers. Subsequently, Sau & Mahesh
(2008) use DNS to study the effect of crossflow on vortex rings. Three different regimes
are found to exist depending on the stroke ratio (ratio of stroke length to nozzle exit
diameter) and ring velocity ratio (ratio of average nozzle exit velocity to free stream
crossflow velocity). A regime map was obtained (figure 1) which categorizes these
three different regimes. For velocity ratio less than approximately 2, vortex rings do
not form. Instead, a hairpin vortex is obtained at these low velocity ratios. For large
stroke ratios and velocity ratios below 2, a periodic train of hairpin vortices is shed
downstream. For velocity ratios above 2, two regimes are obtained depending upon
stroke ratio. Lower stroke ratios yield a vortex ring tilted upstream, while higher
stroke ratios yield a downstream tilted vortex ring accompanied by a trailing column
of vorticity. A transition curve in the map defines the transition from a discrete
vortex ring to a vortex ring with trailing column. The transition curve is obtained
by fitting a curve, which passes through a set of transition stroke ratios obtained
from simulations at different ring velocity ratios and has an asymptote at L/D =3.6
(formation number). The transition stroke ratio decreases with decreasing velocity
ratio. For very high values of velocity ratio, the transition stroke ratio approaches
the ‘formation number’.

In this paper, we perform DNS of pulsed jets in crossflow for several jet velocity
ratios and pulse conditions. We show that jet penetration and spread can be maximized
for specific pulse conditions. We transform the pulsing conditions of the jet into
equivalent vortex ring parameters (stroke ratio and velocity ratio), which are then
plotted on the regime map (figure 1). The optimal conditions are seen to collapse
onto a curve in the regime map. Data from several experiments are then considered,
the properties of the resulting vortex rings extracted and the experimental optimal
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FIGURE 2. (a) A schematic of the problem. (b) Typical waveform at the nozzle exit resulting
from a square waveform specified at the nozzle inflow.

conditions are also seen to collapse onto the same optimal curve in the regime map.
This paper is organized as follows. Section 2 discusses the problem, provides details
of the simulations and defines the relevant parameters. Simulation results for high
velocity ratio pulsed jets in crossflow are presented in §3. In §3.3, the simulation
results are interpreted in terms of the vortex ring regime map. Experimental results
are analysed in §4. Simulations of very low velocity ratio pulsed jets dominated by
hairpin vortices are discussed in § 5. The paper concludes with a brief summary in §6.

2. Simulation details
2.1. Problem statement

A fully modulated pulsed jet is injected through a cylindrical nozzle with 3:1
diameter ratio (figure 2a). The nozzle shape of 3:1 diameter ratio is created using an
interpolated B-spline curve. In the symmetry plane, the curve is interpolated using
the following points: (—0.5, 0, 0), (—0.866, —1, 0) and (—1.732, —1.5, 0). The origin of
the coordinate system is located at the centre of the nozzle exit plane, the nozzle axis
points in the y-direction and the crossflow is along the x-direction. Pulsing causes the
nozzle fluid to form a series of vortex rings as it exits the nozzle. These vortex rings
interact with the crossflow, which is modelled as a laminar boundary layer over a flat
plate. A square wave velocity profile is prescribed at the nozzle inflow to simulate a
pulsed jet. Figure 2(b) shows a typical velocity waveform at the centre of the nozzle
exit plane. Note that the exit velocity waveform is very close to the square wave
prescribed at the nozzle inflow. In experiments, the exit-velocity waveform can be
quite different from the prescribed inflow waveform unless some form of control is
applied; e.g. M’Closkey et al. (2002) use a linear compensator in their experiments to
obtain a square waveform at the nozzle exit.
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2.2. Numerical method

The numerical scheme solves the incompressible Navier—Stokes and continuity
equations

ou;  Ouu;  9p 3%u; ou;

ot an - axi vaxjxj’ 8x,~ =0 (21)
on unstructured grids. Here u;, p and v denote the velocities, pressure and
kinematic viscosity, respectively. The density of the fluid is assumed constant and
is absorbed into the pressure. The numerical scheme is described in detail by Mahesh,
Constantinescu & Moin (2004). The algorithm stores the Cartesian velocities and the
pressure at the centroids of the cells (control volumes), and the face normal velocities
are stored independently at the centroids of the faces. The scheme is a predictor—
corrector formulation, which emphasizes discrete energy conservation on unstructured
grids. This property makes the algorithm robust at high Reynolds numbers without
numerical dissipation. The predicted velocities at the control volume centroids are
obtained using the viscous and the nonlinear terms of (2.1), which are then used to
predict the face normal velocities on the faces. The predicted face normal velocity is
projected so that continuity is discretely satisfied. This yields a Poisson equation for
pressure, which is solved iteratively using a multigrid approach. The pressure field
is used to update the Cartesian control volume velocities. Implicit time stepping is
performed using a Crank—Nicholson scheme. The algorithm has been validated for a
variety of problems over a range of Reynolds numbers (Mahesh et al. 2004).

The passive scalar is computed by solving the advection-diffusion equation

0C 0dCu; 92C
7= Uy _ Y , (2.2)
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where C is the concentration of the scalar. The fluid emerging from the nozzle exit
has a value of C = 1.0, and the ambient fluid has C =0.0. The spatial derivatives are
computed using a predictor—corrector method (Muppidi & Mahesh 2008). The scalar
field is first advanced using a second-order central difference scheme. The predicted
scalar field is corrected in regions of scalar overshoot using a first-order upwind
scheme. This corrector step ensures that the passive scalar concentration is locally
bounded (i.e. C € [0, 1]). Also, the scalar is advanced in time using the second-order
Adam-Bashforth scheme at a smaller time step than that used for the velocity field.
The velocity field is first advanced in time; it is then interpolated in time when needed
for the scalar equation.

2.3. Computational domain and boundary conditions

The computational domain spans 40 D x 40 D x 20 D above the nozzle exit in the x-,
y- and z-directions, respectively, and includes a 10 D length of nozzle. The crossflow
is simulated as a laminar flow over a flat plate. The velocity field from the self-similar
Blasius-boundary-layer solution is specified at the inflow plane of the crossflow, 7 D
upstream of the nozzle exit. The velocity field is such that in the absence of nozzle
fluid, the crossflow has prescribed 85+, at the centre of the nozzle exit. On the spanwise
boundaries (z/D = +10), the velocity field corresponding to laminar crossflow over a
flat plate is prescribed. Free stream velocity boundary conditions are specified on the
top boundary at y/D = 20. At the nozzle inflow plane (y/D = —10), spatial profile of
the specified velocity is a top hat. A zero-gradient boundary condition is used at the
outflow.
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2.4. Problem parameters

Figure 2 shows a schematic of a square wave pulse. The pulse frequency f may be
non-dimensionalized using the mean jet velocity U; (obtained by averaging nozzle
exit velocity over the nozzle cross-section in one time period T) and the nozzle exit
diameter D. This yields the Strouhal number St = fD/U;. Duty cycle « is defined as
the ratio of pulse width (t) to the time period (¢ =t/T). Here, pulse width is the
length of time for which the pulse is ‘on’. For a fully modulated jet, the inflow velocity
is set to zero when the pulse is ‘off. The peak pulse velocity and free stream crossflow
velocities are denoted by U, and U, respectively. The mean jet to crossflow velocity
ratio r; is defined as the ratio of mean jet velocity U; to U,. The Reynolds number
based on U, and nozzle exit diameter (D) is 650 for all simulations in this paper.

The properties of the vortex ring produced during each pulsing cycle may be
related to the pulse parameters as follows. In experiments, vortex rings are generated
by ejecting a column (length L) of fluid through a nozzle (diameter D). Vortex ring
formation is therefore determined by the stroke ratio, L/D. For a square waveform,
the equivalent stroke ratio, L/D can be obtained from pulsing parameters (e.g. St,
«) as follows. In each cycle, L =AU;t=AU;aT, where AU, is the peak-to-peak
velocity. Hence, the stroke ratio

£ . (AUI)T _ (AUJ)()[ _ (AUJ)Ol % (Uj> (AU )Ol % <1>
U fD U, St)’

D D fD U;
In the presence of crossflow, another important parameter is the ring velocity ratio
(7ring), which is defined as

(2.3)

AU;
Fring = .
Us

Note that for fully modulated (100 % modulation) pulsed jets, the mean jet velocity,
U,;=(1/T)f,"u dt = AU;a. This implies that

(2.4)

L 1 .

D=5 for 100 % modulation, (2.5)
L _ (AUj) 1 . .
— — — | fi . .
. 7, X <St> or partial modulation (2.6)

Note that the vortex ring parameters (L/D, r.,,) depend on the ‘deviation of
velocity’ about the mean velocity. On the other hand, the mean jet velocity ratio
depends on the mean jet velocity. This observation allows the vortex ring parameters
to be consistently computed regardless of jet mean velocity ratio and modulation.
Equations (2.3)-(2.6) show how different control strategies determine different ring
properties. Assuming that U; and U, are fixed, if the duty cycle « is fixed and St is
varied, then L/D varies while r,,, stays constant — the path AB in figure 3. If St is
fixed and « is changed, L/D stays fixed and r,,, varies (path AC). If both St and
Fring Vary, then L/D varies along with r,;,, (e.g. path AD).

For a given jet and crossflow combination (r;, U;), there are two independent
parameters — St and AU;. The parameters traverse paths similar to AD (with varying
duty cycle) as in figure 3 Simulations are performed for fixed AU; (which results in
fixed duty cycle), so that there is only one independent parameter St. In this case,
parameters traverse a fixed path like AB in figure 3.
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Vortex ring regime, 7y > 2

Case 7y (%) Modulation(%) Optimal St* Optimal (L/D)" Uncertainty in (L/D)" (%)

I 80 20 100 0.28 35 +7.1
II 80 30 100 0.28 35 +7.1
I11 6.0 20 100 0.4 25 +5.0
v 45 15 100 0.5 2.0 +6.2
v 45 20 100 0.5 2.0 +6.2
VI 35 20 100 0.67 1.5 +8.3
VII 100 35 100 0.28 35 +7.1
VIII 45 25 75 0.21 2.0 +6.2

TaBLE 1. Simulations performed and corresponding optimal conditions.

A B
1
Vring
D
C
L/D —

Ficure 3. Different trajectories in ring parameter space defined in terms of stroke ratio L/D
and ring velocity ratio, 7yig.

The effect of the oncoming crossflow boundary layer is not studied in this paper.

2.5. Simulation cases

Table 1 lists the conditions for the various simulations performed. For different
combinations of ring velocity ratio and duty cycle, the stroke ratio L/D (inverse
of St) is varied and an optimal stroke ratio is identified. The combination of cases
allows the effect of ring velocity ratio and duty cycle on optimal stroke ratio to
be assessed. Note that the ring velocity ratio is varied by varying the free stream
crossflow velocity. So, for a given ring velocity ratio and duty cycle, mean jet to
crossflow velocity ratio (r;) remains constant as St is being varied. St ranges from
2.0 to 0.167, which corresponds to variation of L/D from 0.5 to 6. Table 1 also
tabulates the optimal L/D and corresponding optimal Sz at different ring velocity
ratios and duty cycles. Optimal St corresponds to the frequency which results in
the maximum overall penetration for a given jet and crossflow combination. The
maximum overall penetration is obtained by the maximum y-location of vorticity or
non-zero passive scalar concentration (both yielded the same condition). The optimal
condition is obtained by first narrowing down the range where the optimum lies and
then performing additional simulations over that range. For example, figure 5 shows
simulation results for case II with L/D =1.4, 2.0, 3.5 and 6.0, which correspond to
St=0.714, 0.50, 0.28 and 0.167, respectively. However, simulations are also performed
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FiGURE 4. (Colour online) Case I: (a—d) Contours of z vorticity and (e—h) scalar concentration
in the symmetry plane. Ring velocity ratio, r.,, =8.0, and duty cycle, @ =20 %, are fixed
(Up=3.0, U, =0.38). Strouhal number is varied: (a) and (e) St =0.714; (b) and (f) St =0.50;
(c) and (g) St=0.28; (d) and (h) St =0.167. Note that maximum penetration is achieved for
St =0.28.

for 3.0, 3.25, 3.75 and 4.0. In this case, the uncertainty in the optimal stroke ratio is
+7.1 %. Table 1 lists the uncertainty in optimal stroke ratio for all cases.

3. Simulation results for r,,, > 2

The behaviour of pulsed jets for r.;,, > 2 is discussed in this section. Optimal pulse
conditions at different ring velocity ratios are examined.

3.1. A ‘typical’ simulation

Figure 4 shows the flow field corresponding to case I in table 1. The ring velocity
ratio (r.me =8) and duty cycle (¢ =20 %) are fixed while frequency or St is varied:
(a) St=0.714; (b) St=0.50; (c) St=0.28; (d) St=0.167. Contours of w, vorticity
(figure 4a—d) and the corresponding scalar contours (figure 4e—h) in the symmetry
plane are shown. Note that the pulsed jet produces a series of discrete vortex rings in
each of the cases. In figure 4(a—c), upstream tilted vortex rings are produced, and the
rings merge and interact further downstream. For St =0.167, in figure 4(d), vortex
rings with trailing column are produced. These rings strongly interact with their
trailing column in the near field. Note that as St decreases from 0.714 (figure 4a)
to 0.28 (figure 4c¢), the jet penetration increases. Further reduction in frequency
results in lower jet penetration as observed in figure 4(d). Thus, there exist optimal
pulse conditions which maximize penetration of the jet into the crossflow. The jet
penetration is maximum at St =0.28 as shown in figure 4(c).

In order to quantify mixing, the total volume of scalar-carrying fluid is computed.
Schmidt number (Sc) of the scalar is 1. Total volume of scalar-carrying fluid is
computed as the sum of all volume elements which have scalar concentrations above
a threshold value (set to 0.01) in the domain above the nozzle exit plane (y/D > 0).
Figure 5 shows the time evolution of total scalar-carrying fluid for different St. After
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FIGURE 5. (Colour online) Variation of total volume of scalar-carrying fluid with time. Ring
velocity ratio is 8.0, duty cycle is 20 %, and several stroke ratios are considered.

the jet exits the domain, the volume of scalar-carrying fluid remains nearly constant.
Note that optimal conditions extracted from the total volume of scalar are consistent
with those obtained from maximum penetration. The total volume of scalar is also
maximum at St =0.28. The passive scalar contours (figure 4e—h) reveal an interesting
structural feature of pulsed jets in crossflow. Note that (figure 4e—g) the jet splits in
two streams for St > 0.28. For lower St (e.g. 0.167), no such splitting is observed and
only a single stream of the jet is observed (figure 6h). In the case of splitting, the second
stream is formed by the ‘wake of the rings’ being convected by the crossflow. At lower
St, the rings merge in the near field and the second stream is not pronounced. Fully
modulated pulsed jets in crossflow experiments of Eroglu & Breidenthal (2001) reveal
similar structural properties and dependence on St. As shown in the simulation, the
location of the ring merging moves upstream as St increases. Similar behaviour is ob-
served in the experiments. For very high St (e.g. St > 2), the pulsed jet behaves similarly
to a regular jet, since the stroke ratio is too small to produce deeply penetrating rings.

3.2. Effect of velocity ratio and duty cycle

Figure 6 shows simulation results for case II. Here, conditions are similar to case I
except the duty cycle is 30 % instead of 20 %. Figure 6(a—d) shows contours of w,
vorticity and figure 6(e—h) shows the corresponding scalar contours in the symmetry
plane. Note that the rings interact earlier when the duty cycle is 30 %. However, the
overall behaviour is similar to that at the lower duty cycle (20 %). Also, note that
varying the duty cycle does not change the optimal Strouhal number. However, for
very large duty cycle, e.g. a > 50 %, there is no optimal pulsing frequency, since the
rings interact in the very near field irrespective of pulsing frequency. The trajectories
at very high duty cycle (o > 50 %) are similar to that of a regular transverse jet. This
behaviour is pronounced at lower ring velocity ratios (3.0-5.0) as discussed later.
The optimal forcing conditions are affected by the ring velocity ratio. Figure 7
shows results for case V in table 1. The ring velocity ratio is lower (4.5) than the
preceding cases discussed and the duty cycle is 20 %. Figure 7(a—e) shows contours of
vorticity in the symmetry plane at different Strouhal number: (a) St =1.0; (b) St =0.5;
(c) St=0.4; (d) St =0.333; (e) St =0.2. Figure 7(f—j) shows the corresponding scalar
contours in the symmetry plane. Note that the jet penetration varies with the pulsing
frequency and maximum penetration is obtained at St =0.5 (figure 7). This optimal



374 R. Sau and K. Mahesh

(a) (b) (d)

0 5 10 15 20

0 é 1‘0 1r5 ZIO 0 5I ll() 1Y5 ZIO 0 5' lb 15 20 0 5I lb 1'5 20
x/D x/D x/D x/D

FIGURE 6. (Colour online) Case II: (a—d) Contours of z vorticity in the symmetry plane. Ring

velocity ratio, ry,e = 8.0, and duty cycle, « =30 %, are fixed (U, =3.0, Uy, =0.38). Strouhal

number is varied: (a) and (e) St =0.714; (b) and (f) St=0.50; (c) and (g) St =0.28; (d) and
(h) St =0.167. Note that maximum penetration is achieved for St =0.28.
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FIGURE 7. (Colour online) Case V: (a—e) Contours of z vorticity and (f—j) scalar
concentration in the symmetry plane. Ring velocity ratio, rn,e =4.5, and duty cycle is 20 %
(Up=3.0, Uy, =0.67). Strouhal number is varied: (a) and (f) St=1 0 (b) and (g) Str=0.5; (c)
and (h) St=0.4; (d) and (i) St=0.333; (e) and (j) St =0.2. Note that the optimal penetration
is obtained at S7=0.5.

value is higher than the optimal St obtained at r,;,, = 8.0. Also, note that the jet splits
into two streams near the optimal pulsing frequency. The ring interactions are much
stronger at these low velocity ratios (such as 4.5) and also the trajectories are lower
than for the ring velocity ratio of 8.0 (cases I and II).
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symbols denote the optimal stroke ratio (table 1) at the corresponding ring velocity ratios.
The solid curved line denotes the transition curve for a single vortex ring in crossflow. The
horizontal bars around the optimal stroke ratios denote the uncertainty in each case.

The effect of duty cycle at r,,, =4.5 was studied by performing simulations at
varying duty cycle. For example, at 15 % duty cycle (case IV), the same optimal St
is obtained. As observed for r,;,; =8, the optimal forcing does not change when the
duty cycle is lowered. As long as the duty cycle is low enough (but non-zero), e.g.
10 % < «a <40 %, optimal forcing conditions are found to exist, and varying the duty
cycle only changes penetration difference between optimal and non-optimal cases.
For very large duty cycle (« > 50 %), the ring interactions occur in the very near field
at these low velocity ratios (3.0-5.0) and the trajectories resemble that of a regular jet
in crossflow. Simulations were also performed at r.;,, =6 (case III) and 3.5 (case VI)
as listed in table 1. For both velocity ratios, optimal pulse conditions are obtained.

3.3. Interpretation in terms of regime map

The preceding section showed that an optimal pulsing frequency exists, when pulsing
the jet at fixed ring velocity ratio and duty cycle. These optimal conditions may be
interpreted in terms of the regime map (figure 1) for single vortex rings in crossflow
(Sau & Mahesh 2008). As discussed in § 2.4, the pulsing parameters can be transformed
into ring parameters. Recall that a square waveform with 100 % modulation yields
an equivalent stroke ratio L/D, which is the inverse of St. Also recall that if the
mean jet to crossflow ratio (r; =U;/U, and U; = AU,a) is fixed, the product of ring
velocity ratio (r.,,) and duty cycle («) is fixed. In each of the cases listed in table 1,
the time period of the pulse is varied while keeping the pulse velocity fixed. Fixing the
pulse velocity (AU;) yields fixed ring velocity ratio (since U, is fixed) and therefore
fixed duty cycle. Varying the time period results in variation in stroke ratio. Thus, the
pulsing conditions can be transformed into ring parameters and the flow field can be
interpreted in terms of the behaviour of vortex rings in crossflow.

Consider case I, which was discussed earlier in figure 4. Here, r,,, = 8.0 and the
equivalent stroke ratios are: (a) 1.4; (b) 2.0; (c¢) 3.5; (d) 6.0. These conditions are
plotted as circles in the regime map in figure 8. The solid circle corresponds to the
optimal stroke ratio, L/D =3.5. Note that for stroke ratio less than the transition
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FIGURE 9. (a) Ring interactions. (b) Ring—column interactions.

stroke ratio (L/D < 3.5 or St = 0.28) in figure 4(a—c), the pulsed jet produces a series
of upstream tilted vortex rings without any trailing column of vorticity. Vortex rings
with L/D =1.4 and 2.0 (figures 4a and 4b, respectively) contain far less circulation
than rings with L/D =3.5 (figure 4c). The weaker rings interact in the near field
and the penetration is less. In figure 4(c), the upstream tilted vortex rings contain
maximum momentum when L/D approaches the transition stroke ratio and therefore
penetrate deep into the crossflow before interacting with each other. On the other
hand, vortex rings with a trailing column of vorticity are produced when the stroke
ratio, L/D = 6, is higher than the transition stroke ratio (figure 4d, St =0.167). These
rings have approximately the same momentum as for L/D = 3.5 (figure 4c), but the
trailing columns strongly interact with subsequent ring—column structures in the near
field itself. This interaction prevents deep penetration into the crossflow. Optimal
penetration is therefore obtained at St=0.28 or L/D =3.5 for r,,, = 8. Simulations
are also performed at r,,, =10 (case VII). The results are similar to r.,, =8. The
optimal condition corresponds to St =0.28 or L/D =3.5 (figure 8).

Next, consider simulations at r,,, =4.5 (case V, figure 7). The equivalent stroke
ratios vary from 1.0 (figure 7a) to 5.0 (figure 7b). The equivalent vortex ring
parameters are plotted using square symbols on the regime map in figure 8. The solid
square symbol represents the optimal stroke ratio. Note that the optimum lies left of
the transition curve unlike its behaviour at the higher velocity ratio discussed above.
The same behaviour is observed for simulations performed at r,;,, =6 (case III) and
3.5 (case VI) listed in table 1. These two cases are marked by triangles in figure 8. A
curve representing optimal stroke ratios at different velocity ratios can be estimated
passing through the points shown in the figure. Note that this curve coincides with
the transition curve at higher velocity ratios and falls to the left of the transition curve
at lower ring velocity ratios. The optimal stroke ratio decreases as the ring velocity
ratio decreases. Recall that the transition curve represents the transition in structure
and tilting for a ‘single’ vortex ring in crossflow. The reason for the shift of optimal
condition from the transition curve is due to the interaction between successive rings.
At low ring velocity ratios, the interaction between successive rings increases as the
stroke ratio increases. This mutual interaction is stronger at lower ring velocity ratios.

3.4. Ring interactions

The interaction between successive rings is qualitatively different for the regimes
that produce upstream-tilting vortex rings and downstream-tilting rings with trailing
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Figure 10. (Colour online) Schematic to explain ring deformation.

column. In the absence of a trailing column, ring-ring interactions (figure 9a) cause
out-of-plane stretching and deformation of the rings. Note that as the rings evolve,
they stretch in the spanwise direction and deform out-of-plane to develop a ‘bow-like’
shape. Also, filaments with opposite spanwise vorticity come closer in the streamwise
direction. The evolution and deformation of these rings can be explained using self-
and mutual induction (figure 10).

When a single vortex ring exits the nozzle, it tilts upstream as explained in Sau &
Mahesh (2008). The subsequent ring will induce a force to expand the upper ring
radially outward similar to the leapfrog mechanism of two vortex rings. However,
the interaction between the streamwise crossflow and the ring leads to a straining
flow in the plane of the ring. The straining flow stretches the ring in the spanwise
direction (stage 1, figure 10). The ring evolves into a tilted elliptic ring. Marshall &
Grant (1994) studied the effect of straining flow on the evolution of vortex rings
using linear theory and the vortex element method. They suggest that depending on
the degree of straining, either the ring alternately elongates in the direction of the
stretching and compression of the external flow or the ring monotonically elongates in
the direction of the stretching of the external flow without oscillation. In the present
simulations, the latter scenario is observed. An elliptic ring has smaller distance
between streamwise filaments; this yields larger self-induced force on the streamwise
filaments and the ring deforms into a ‘bow-like’ shape in later stages (figure 10, stage 2).
When a trailing column is present, (figure 9b), the ring above the column expands
and reduces in speed while the trailing column enters into the ring structure. Even at
moderate duty cycle, the trailing column strongly interacts with the ring below it.

3.5. Partially modulated pulsed jets

All simulations discussed thus far, consider pulsed jets with 100 % modulation; i.e. the
minimum jet velocity during a time period is zero. Note that percentage modulation
is defined as the ratio of the peak-to-peak jet velocity to maximum jet velocity. The
optimal values in figure 8 correspond to simulation cases with 100 % modulation.
For partially modulated jets the peak-to-peak velocity difference is fixed and the
lower bound of the prescribed jet velocity is non-zero. The equivalent stroke ratio
and ring velocity ratio should be based on the peak-to-peak velocity difference and
crossflow free stream velocity as defined in §2. When defined in this manner, the
optimal combination of stroke and ring velocity ratios in a partially modulated jet is
the same as fully modulated jet (figure 8).

An additional set of simulations were performed for a 75 % modulated jet with ring
velocity ratio of 4.5 as shown in figure 11. Contours of z vorticity (figure 11a—c) and
scalar concentration (figure 11d—f) are plotted in the symmetry plane. The Strouhal
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FIGURE 11. (Colour online) The effect of partial modulation (75 %). (a—) Contours of z
vorticity and (d—f) scalar concentration in the symmetry plane. Ring velocity ratio, 7.y, =4.5

and duty cycle is 25% (U;=1.75, AU =3.0, U,, =0.67). Strouhal number or Stroke ratio
is varied: (a) and (d) St=0.43,L/D=1.0; (b) and (e¢) Str=0.21,L/D=2.0; (¢) and (f)
St=0.11, L/ D =4. Note that optimal penetration is obtained at St =0.21 or equivalent stroke
ratio of 2 and 7y, =4.5.

number St is varied (St = (a) 0.43, (b) 0.21 and (c) 0.11) while keeping the duty cycle
(¢ =25 %) and ring velocity ratio (7., =4.5) constant. As discussed in §2, St=D/L
for 100 % modulation. On the other hand, for partial modulation, the relation will
involve the base flow. In this particular case, St =0.43 x D/L. Figure 11(b) shows
that optimal penetration corresponds to equivalent stroke ratio of 2. Recall that the
optimal stroke ratio was 2 at ring velocity ratio of 4.5 for a fully modulated jet. Thus,
optimal conditions can be predicted even for partial modulation using the equivalent
stroke ratio and ring velocity ratio as shown in figure 8.

Note that in all the cases in figure 11(d—f), the scalar contours show multiple
streams for the pulsed jet. Even in the regime where the vortex ring has a trailing
column (e.g. figure 11f, L/D=4), the jet splits in two streams unlike the fully
modulated jet. This is because the minimum jet velocity is non-zero for partially
modulated jets. So, the jet basically consists of high-momentum fluid that generates
rings and low-momentum fluid that stays close to the wall. The second stream is
mainly jet fluid with non-zero jet velocity during the period when the pulse is ‘off”.

3.6. Effect of ‘experimental square’ waveform

The simulations in this paper are performed using square wave excitation at the
nozzle inflow. The corresponding waveform obtained at the nozzle exit is very close
to a square waveform, as discussed in § 2. However, exit waveforms in experiments are
not perfect square waves. The effect of this deviation from a perfect square waveform
is therefore investigated. A simulation is performed with a modified square waveform
corresponding to the experiments of Shapiro et. al (2006). Figure 12(a) shows the
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FIGURE 12. (a) and (b) Mass flow rate at the nozzle exit and corresponding flow field for a
waveform similar to the experiments of Shapiro et al. (2006). (¢) and (d) Mass flow rate at
the nozzle exit and corresponding flow field for a square waveform. Both waveforms have the
same stroke ratio, velocity ratio and duty cycle.

waveform from one of their experiments (figure 3b, page 1295 of their paper). The
modified square waveform (figure 12a) is scaled to yield a stroke ratio of 2 and ring
velocity ratio of 4.5. The duty cycle of the waveform is 27 %. The equivalent square
waveform is shown in figure 12(c). Figure 12(b, d) shows spanwise vorticity contours
in the symmetry plane for both waveforms. Note that there is hardly any difference
in either trajectory or the vorticity field. This is because the flow depends largely on
the amount of circulation imparted during the pulse (stroke ratio) and velocity ratio.
The circulation is not significantly affected by the deviations from a perfect square
waveform in the experiments. The flow fields will therefore be consistent as long as
the stroke ratio and velocity ratios are properly computed.

4. Interpretation of and comparison to experimental results

In this section, we consider results from several experiments and interpret the
optimal conditions in terms of the regime map. We show that the optimal conditions
in experiments can be predicted/explained using the stroke and ring velocity ratios
of the equivalent vortex rings. Also, while the optimal Sz or duty cycles vary over a
wide range, the regime map shows good collapse of optimal conditions between the
various experiments and the simulations discussed earlier.

4.1. Experiment of Shapiro et al. (2006)

Shapiro et al. (2006) performed controlled experiments of pulsed jets in crossflow.
They note that specific combinations of pulse widths and forcing frequencies produce
deeply penetrating vortex rings and bifurcating jets, and that the jet penetration is
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Case U; (ms™!) U, rj U, s Re; f(Hz) aort(%) T (ms)

1 2.8 1.1 2.58 1.5 1420  44-147 10-50 3.0
4 7.2 1.8 4.0 23 3660  87-130 10-50 1.6

TaBLE 2. Experimental conditions of Shapiro et al. (2006).
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Figure 13. (Colour online) (a) Figure 4 from experiment of Shapiro et al. (2006), reprinted
by permission; mean and instantaneous flow field (case 1, U}’rms =1.5ms™!) with forcing
frequency f =110Hz for duty cycle ranging from 10-50 %. Maximum jet penetration occurs
at 30 % duty cycle and corresponds to optimal pulse width (r =3 ms). (b) The experimental
conditions for varying pulse width or duty cycle are transformed in regime map for four
frequencies: O, 44Hz; A, 55Hz; O, 73.5Hz; >, 110Hz. Filled symbols show the optimal
conditions (r =3 ms) at corresponding frequencies. The solid line denotes the transition curve.
(c) Optimal conditions from experiments are compared to simulations. Filled and open symbols
correspond to experiment and simulations, respectively.

maximum under these conditions. Their experiments considered four different jet and
crossflow combinations at two different mean jet to crossflow velocity ratios, 2.58 and
4.0. Table 2 lists experimental conditions for two cases denoted by 1 and 4 in their
paper with jet velocity ratios 2.58 and 4.0, respectively. For each case, the frequency
is fixed and the pulse width is varied such that U},rms is constant (table 2). Since
frequency is fixed and duty cycle is varied such that U},rms is constant, both stroke
ratio L/D and ring velocity ratio r.,, vary. As the duty cycle increases, L/D increases
and r,,, decreases. For each experiment of Shapiro et al. (2006), the parameters can
be transformed into ring parameters and interpreted accordingly.

Figure 13 considers case 1 (table 2) of Shapiro et al. (2006). Figure 13(a) reproduces
from their paper the mean and instantaneous flow field at 110 Hz when the duty cycle
varies from 10-50 %. Optimal penetration is obtained at duty cycle of 30 % with pulse
width of 3 ms. The optimal pulse widths at the other frequencies (44, 55, 73.5 Hz) are
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Optimal ring parameters

Frequency (Hz) r; Optimal 7 (ms) L/D" Tring
44 2.58 3 1.80 3.93

55 2.58 3 1.68 3.55

73.5 2.58 3 1.50 3.19

110 2.58 3 1.28 2.88

TaBLE 3. Case 1 of Shapiro et al.; optimal conditions (U}ms is matched at 1.5ms™!).

Optimal ring parameters

Frequency (Hz) r; Optimal 7 (ms) L/D” Tring
87 4.0 1.6 1.40 3.68

96.7 4.0 1.6 1.34 3.53

124.3 4.0 1.6 1.21 3.19

TaBLE 4. Case 4 of Shapiro et al.; optimal conditions (U, , . is matched at 2.3 ms™!).

Jj,rms

also reported to have the same value of 3 ms. Figure 13(b) shows the corresponding
vortex ring parameters for the four different frequencies (44, 55, 73.5 and 110Hz
for case 1) using different symbols. The stroke and ring velocity ratios are computed
using the peak-to-peak velocity difference. Note that at a given frequency, as the pulse
width increases at fixed U '-,,.ms =1.5ms™, stroke ratio increases and ring velocity ratio
decreases. The optimal pulse width of 3 ms for each of these frequencies is denoted
by solid symbols. The optimal stroke ratios and ring velocity ratios are also listed in
table 3. Note that the optimal conditions lie on the left of the transition curve and
decrease with ring velocity ratio as shown in figure 13(b). In figure 13(c), these optimal
conditions are compared to optimal stroke ratios obtained in simulations. Note that
good agreement is obtained and the experimental optimal conditions follow the same
trend as the simulations.

The flow structures in figure 13(a) are interesting to observe. Below the optimal
duty cycle of 30 %, discrete upstream-tilted vortex rings are evident. Note that the
rings interact in the near field and the penetration is less at lower pulse width or duty
cycle (10-20 %). In these cases, the equivalent stroke ratios are much smaller than
their transition values (less than 1) as noted in figure 13(b). These rings therefore
contain much less circulation, which results in less penetration. Around the optimal
duty cycle (25-35 %), upstream-tilted vortex rings are produced that penetrate deep
into the crossflow before interacting or merging with each other. At even higher duty
cycle (40-50 %), the rings interact in the very near field and the pulsed jet looks more
like a steady jet. This behaviour is similar to that observed in the simulations in § 3.

Case 4 in Shapiro et al’s experiments examines optimal pulse width at various
frequencies. The experimental conditions for case 4 are listed in table 2. The pulse
width is varied at fixed frequency such that Uj/‘.rms =2.3ms~!. In this case, the optimal
pulse width is found to be 1.6 ms at all the frequencies. Figure 14(a) plots the
experimental conditions in the regime map for three frequencies (87, 96.7 and 124.3 Hz)
as the pulse width is varied. Note that as the pulse width increases, stroke ratio
increases and ring velocity ratio decreases. The optimal conditions are listed in table 4
and marked using solid symbols in figure 14(a). Figure 14(b) compares the optimal
experimental conditions to simulation results. Note that good agreement is obtained.
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FIGURE 14. (Colour online) (a) Experimental conditions (case 4 of Shapiro et al.,
U},rms =2.3ms"!) with varying pulse width for different frequencies, O, 87 Hz; O, 96.7 Hz;
V, 1243 Hz, are plotted in stroke ratio and ring velocity ratio space. Filled symbols show
the optimal conditions with pulse width 1.6 ms. Solid line denotes the transition curve. (b)
Optimal condition for the experiment is compared with simulations. Filled and open symbols

correspond to experiment and simulations, respectively.
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FiGure 15. (Colour online) (a) Figure 6(c) from experiment of Shapiro et al. (2006), reprinted
by permission; smoke visualization for experimental case 1, with peak-to-peak AU; fixed at

48ms~! with forcing frequency f=85Hz for duty cycle ranging from 10-50 %. Maximum
jet penetration occurs at 25 % duty cycle. (b) Experimental conditions are plotted in stroke
ratio and ring velocity ratio space. Filled symbol shows the optimal condition with duty cycle
25 %. The solid line denotes the transition curve. (¢) Optimal condition for the experiment is
compared to simulations. Filled and open symbols correspond to experiment and simulations,
respectively.

Shapiro et al. (2006) also perform experiments where they fix the peak-to-peak jet
velocity excitation amplitude AU; and frequency, while varying the duty cycle. Note
that as the duty cycle increases for fixed AU;, the stroke ratio increases while ring
velocity ratio stays fixed. Figure 15(a) shows the instantaneous flow field for different
duty cycles (10-50 %) at 85Hz and AU; =4.8ms~'. The experimental conditions
for this case are transformed into corresponding vortex ring parameters space in
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Optimal ring parameters

Frequency (Hz) r; Optimal « (%) L/D* Tring
55 2.58 15 1.718 4.36
73.5 2.58 20 1.714 4.36
85 2.58 25 1.852 4.36

TaBLE 5. Case 1 Shapiro et al.; optimal condition (AU; is matched at 48 ms™!).
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FIGURE 16. (Colour online) Results from the experiments of Eroglu & Breidenthal (2001,
reproduced by permission) showing pulsed jets in crossflow at different Strouhal numbers. (a)
The steady jet, St =0.0. Ring velocity ratio is 4.6 in all cases. The equivalent stroke ratios
(L/D) are (b) 1.8, (c) 1.2 and (d) 0.7. Note figure (b) shows the maximum penetration for
L/D=1.8. (e, f) Corresponding regime map.

figure 15(b). Note that optimal penetration is achieved at duty cycle of 25 %. This
optimal duty cycle of 25 % at 85Hz corresponds to L/D of 1.8 at r,,, =4.36 (solid
symbol in figure 15b). The optimal condition is plotted along with the simulation
results in figure 15(c). Note that good agreement is obtained. The optimal duty
cycles for three different frequencies (55, 73.5 and 85 Hz) and the corresponding ring
parameters are listed in table 5.

4.2. Experiment of Eroglu & Breidenthal (2001 )

Eroglu & Breidenthal (2001) study fully modulated pulsed transverse jets with square
wave excitation at 50 % duty cycle. Figure 16(a—d) shows the flow field in their
experiments at different pulsing frequencies (a) St =0.0 (steady jet), (b) St =0.28, (¢)
St=0.42 and (d) St=0.71. The mean jet to crossflow velocity ratio is fixed at 2.3,
which corresponds to a ring velocity ratio of 4.6. The equivalent stroke ratios for these
cases are shown in figure 16(a—d). It is clear that discrete vortex rings are produced at
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FiGgure 17. (Colour online) (a) Experiments of Tomar, Arnaud & Soria (2004, reproduced
by permission) on ZNMF-JIC reveal that for St > 0.19 (corresponds to L/D < 1.84), the
mean jet structure has multiple trajectories and for St <0.11 (L/D > 3.18) the jet has a single
trajectory. The equivalent ring velocity ratio for this case corresponds to 3.53. (b) Symbols
correspond to transformed experimental data in ring parameter space. Filled and open symbols
correspond to multiple and single trajectory structure, respectively.

St =0.28, which penetrate the crossflow in the near field and interact/merge further
downstream. Also the jet splits in two streams. As the frequency is increased to
St =0.42, the location of the first interaction shifts upstream and the jet penetration
is lower. Again, as the frequency is increased to St =0.71, the rings interact in the very
near field and the penetration is much lower than the other two cases. This behaviour
is consistent with that observed in the simulations. The experimental conditions
are transformed onto the regime map in figure 16(e—f). Note that the stroke ratio
for optimal penetration lies very close to the optimal stroke ratios obtained in the
simulations.

4.3. Zero-net-mass-flux jet in crossflow by Tomar et al. (2004)

Tomar et al. (2004) study the effect of Strouhal number and velocity ratio on the
mean structure of zero-net-mass-flux jets in crossflow (ZNMF-JIC) using planar
laser-induced fluorescence. Experiments are performed for velocity ratios ranging
from 2 to 5 and Strouhal numbers varying from 0.08 to 0.56. They observe two
distinct flow regimes depending on St as shown in figure 17(a). Figure 17(a) shows
the mean structure of the jet as St is varied at velocity ratio of 5. A single mean jet
trajectory is observed for St < 0.11 and multiple trajectories are observed for St > 0.19.
Tomar et al. (2004) also suggest that the multiple trajectory ZNMF-JIC penetrates
more deeply into the ambient crossflow. Table 6 lists the vortex ring parameters
computed for their experiments. The equivalent stroke ratio ranges from 0.64 to 4.42
and the ring velocity ratio varies from 1.41 to 3.16. Ring parameters are computed
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St L/D Mean structure

0.08 442 single trajectory
0.11 3.18 single trajectory
0.19 1.84 multiple trajectory
0.28 1.27 multiple trajectory
0.56 0.64 multiple trajectory

TaBLE 6. Experiments ZNMF-JIC (Tomar et al. 2004).

from maximum piston velocity, orifice diameter and free stream crossflow velocity.
Note that for L/D =0.64, 1.27 and 1.84, multiple trajectories are observed while for
L/D =3.18 and 4.42, single trajectories are observed. These conditions are plotted on
the regime map in figure 17(b). The experimentally observed behaviour is consistent
with our simulations of fully modulated jets in crossflow. When the pulsing produces
single vortex rings without any trailing column, multiple trajectories are observed
as shown in figures 6(g) and 7(g). As observed in their experiments, the multiple
trajectory jets penetrate deeper into the crossflow.

5. Simulation results for r,;,, <2

The behaviour of pulsed transverse jets at low velocity ratios is fundamentally
different from that at high velocity ratios. This difference may be traced back to the
behaviour of vortex rings in crossflow at low velocity ratios. As discussed by Sau &
Mahesh (2008) and summarized in § 1, at low velocity ratios (less than 2), pulsing
into a crossflow produces hairpin vortices and not vortex rings. The hairpin vortices
form on a certain time scale; if the pulse duration is longer than this time scale, a
series of hairpins is shed in a periodic manner. Even a continuous, low velocity ratio
jet sheds hairpins. This shedding frequency depends on velocity ratio and Reynolds
number. Most of the entrainment of crossflow fluid is due to the hairpin legs.

Here, simulations of continuously pulsed low velocity jets in crossflow are
performed. Optimal pulse frequencies are examined at different velocity ratios. Note
that for a fixed velocity ratio and duty cycle, varying the frequency changes the length
of the pulse (stroke ratio). As discussed above, as long as the pulse length is longer
than the time scale on which the hairpins are shed, hairpin structures will form and
shed periodically regardless of the pulse Strouhal number St or stroke ratio L/D. It is
therefore expected that penetration of the pulsed jet will not change when the pulsing
frequency is varied. The simulation results confirm this behaviour. Figure 18 shows
results for a velocity ratio of 0.75 with constant duty cycle of 75 % at different St
or L/D. Instantaneous scalar contours are plotted in the symmetry plane and show
the cross-sections of the hairpin heads. The mean mass flow rate and scalar injection
rate through the nozzle exit are held constant while the frequency is varied. The
total volume of scalar-carrying fluid (V;.), after initial transients exit the domain, is
computed as a metric for mixing. Figure 19 shows how V,. in the domain varies with
time for various stroke ratios at velocity ratio of 0.75 and duty cycle of 75 %. The
initial transients exit the domain around ¢* = 35. For each L/D, V. remains constant
after the flow has exited the domain. This constant value of V,. is compared for
different L/D. Note that V. increases with stroke ratio till L/D =2.5, then remains
approximately constant as stroke ratio increases. This behaviour can be explained as
follows.
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FiGUre 18. (Colour online) Ring velocity ratio = 0.75, duty cycle =75 %. Contours of vorticity
and scalar are plotted in the symmetry plane at different stroke ratios: (a) 1.0, (b) 2.0, (c) 2.5,
(d) 3.0, (e) 4.0 and (f) 6.0. (The length scales on the vertical axes are all y/D.)
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FIGURE 19. Variation of total volume of scalar-carrying fluid in the domain with time. The
ring velocity ratio is 0.75, duty cycle is 75 % and different stroke ratios are considered.

5.1. Timescale of hairpin formation

As mentioned above, there is a natural time scale on which hairpins form at each
velocity ratio and Reynolds number. For lower stroke ratios such as L/D=1 or 2,
the pulse width is smaller than the natural time scale of hairpin formation. As a
result (figure 18a, b), the hairpins are much smaller and weaker. The legs of these
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FIGURE 20. (Colour online) Ring velocity ratio = 1.0, duty cycle =75 %. Contours of scalar in
the symmetry plane at different stroke ratios: (a) 2.0, (b) 2.5, (¢) 4.0 and (d) 6.0. (¢) Variation
of total volume of scalar-carrying fluid in the domain with time. Ring velocity ratio is 1.0,
duty cycle is 75 % and different stroke ratios are considered.

hairpins do not entrain as much fluid compared to the stronger hairpins produced at
higher L/D (e.g. L/D =3 as shown in figure 18d). As L/D increases beyond 3 (18e,
f), each pulse creates more than one hairpin, which is then shed downstream. These
hairpins are created on their natural time scale. In this case, the time scale of hairpin
formation is approximately 2.5 (non-dimensionalized using U, and D). This explains
why V,. increases till L/D =3 and then remains constant. As long as the time scale
of each pulse is larger than the required natural time scale for hairpin formation,
more mixing will be observed. Again at these very low velocity ratios, duty cycle does
not play much of a role if the velocity ratio is held constant. This is because the
hairpins formed by each pulse are quickly swept away by the crossflow before they
can interact with the subsequent hairpins. This is why the higher duty cycle is chosen
to compare different stroke ratios. For very low duty cycles, e.g. 15 %, the interaction
will be even less. It is found that the duty cycle does not have as large an impact at
low velocity ratios as it does at high velocity ratios.

Similar results are observed for other low velocity ratios. Figure 20 shows scalar
contours in the symmetry plane for velocity ratio of 1.0 at different stroke ratios.
The duty cycle is kept constant at 75 %. Figure 20(e) shows the variation of V.
for different stroke ratios. Again, note that the smaller stroke ratio (L/D =2.0)
in figure 20(a) results in weaker and smaller hairpins. Larger stroke ratios such
as L/D=4.0,6.0 (figure 20c, d) yield stronger hairpins. The natural time scale at
Iving = 1.0 is approximately 3.0. The variation of V. in figure 20(e) is consistent with
this physical behaviour.

6. Summary

Controlled simulations of fully modulated, laminar, pulsed jets in crossflow with
square wave excitation are performed. Optimal pulsing conditions for maximum jet
penetration and spread into the crossflow are examined. The evolution of pulsed jets
in crossflow is interpreted in terms of the behaviour of single vortex rings in the
presence of crossflow. The regime map in figure 1 (Sau & Mahesh 2008) for single
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FiGUre 21. (Colour online) Optimal pulsing conditions from several experiments are plotted
along with the optimal data from simulations. Note that the data collapse onto a curve.

vortex rings in crossflow shows that three different flow regimes exist, depending on
the stroke ratio and ring velocity ratio. The pulse conditions (frequency, duty cycle)
can be transformed into the ring parameters and the flow field can be interpreted
using the regime map. Optimal pulsing conditions from all the simulations fall on
a curve in the regime map. Also, data from a wide range of experiments (Eroglu &
Breidenthal 2001; Shapiro et al. 2006) are interpreted in terms of their vortex rings,
and optimal experimental conditions are seen to collapse on the same optimal curve
in the regime map (figure 21).

The behaviour at high (greater than 2) and low (less than 2) velocity ratios is
fundamentally different. For very high velocity ratios, the rings produced by successive
pulses do not interact, and their behaviour is similar to that of single rings in crossflow.
The optimal stroke ratio under these conditions marks the transition between a vortex
ring and vortex ring with trailing column at a given ring velocity ratio (Sau & Mahesh
2008). The optimal stroke ratio for pulsed jets decreases as the ring velocity ratio
decreases. However, as the ring velocity ratio decreases, successive rings begin to
interact with each other and the overall penetration decreases. This interaction has
the effect of shifting the optimal stroke ratio to the left of the transition curve. The
jet apparently splits in two streams for stroke ratios, which produces upstream-tilted
vortex rings without trailing column. This behaviour is observed at stroke ratios
around the optimal conditions. The effect of duty cycle is examined. For very high
values of duty cycle, the rings interact in the very near field irrespective of the
stroke ratio and no optimum is found. As long as the duty cycle is low, an optimal
penetration is obtained and this optimal stroke ratio does not change when duty cycle
changes.

At very low ring velocity ratios, hairpin structures form, and are shed periodically.
These hairpin structures form on a time scale that depends on velocity ratio and
Reynolds number. Pulsed jet simulations at these low ring velocity ratios suggest that
for optimal mixing, the time scale associated with each pulse should at least equal or
be greater than the natural time scale of hairpin formation. Hence at very low velocity
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ratios, large stroke ratios yield the most effective mixing. At very low velocity ratios,
duty cycle does not affect the flow very much if the velocity ratio is held constant.
Regardless of the duty cycle, the hairpins formed by each pulse are swept away by
the crossflow before they can interact with each other.

The main contribution of this paper is to show how optimal pulsing conditions (at
least for square wave pulsing) for jets in crossflow can be predicted in terms of the
vortex rings produced by the pulsing. The regime map allows experimental control
parameters such as stroke length, frequency, duty cycle, kinetic energy of fluctuations,
etc. to be predicted by relating them to the ring stroke and velocity ratios. The
collapse of data from a number of experiments and simulations is encouraging in
the light of the wide scatter that optimal Strouhal numbers are known to display
(Narayanan et al. 2003). Also, the effect of the crossflow is consistently accounted
for in this paper and is not ignored (e.g. Johari 2006). The proposed idea is valid for
both full and partial modulation, since ring parameters are based on the deviation
of the velocity about the mean. Also, the regime map appears to be relatively robust,
as demonstrated by the agreement between an ideal square waveform and a non-
ideal experimental waveform. The regime map is therefore proposed as a promising
approach to predict optimal conditions for pulsed jets in crossflow.
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